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FLAT G-BUNDLES WITH CANONICAL METRICS

KEVIN CORLETTE

1. Introduction

A great deal of attention has recently been focused on the relationship
between the invariant theory of semisimple algebraic group actions on complex
algebraic varieties and the behavior of the moment map and quantum data
provided by an associated symplectic structure. In particular, it has been
shown that the moment map has zero as a regular value precisely when there
are stable points, in the sense of geometric invariant theory [13]. This paper
discusses an infinite dimensional instance of this correspondence involving flat
bundles over compact Riemannian manifolds.

In finite dimensions, this philosophy received its simplest, and earliest,
exposition in [11]. There, Kempf and Ness considered the case of a represen-
tation of a semisimple algebraic group G over C on a complex vector space
V with some positive definite Hermitian form. Geometric invariant theory
picks out a class of G-orbits called the stable ones. To be specific, v € V is
stable if its orbit is closed in V and has the maximum possible dimension.
Kempf and Ness observed that Gv is closed in V if and only if it contains
a shortest vector. On the other side of the ledger, there is a symplectic
structure on V associated with the chosen Hermitian form, and one has the
action of the compact subgroup of G which preserves this form. There is a
moment map associated with this action, and it turns out that the vanish-
ing of this map at v is equivalent to v being the shortest vector in its orbit
under G.

This relationship between symplectic geometry and algebraic geometry has
been rephrased in the more sophisticated framework of geometric quantiza-
tion in, for example, [9]. In another direction, Atiyah and Bott encoun-
tered an infinite dimensional instance of this correspondence in their study
[1] of the Yang-Mills equations over Riemann surfaces. In that situation, the
Kihler manifold in question was the space of all Hermitian connections on a
Hermitian vector bundle over a compact Riemann surface. The analogue of
G was the gauge group of vector bundle automorphisms. Atiyah and Bott
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noted that the curvature could be interpreted as a moment map, and that a
theorem of Narasimhan and Seshadri gave the desired relationship between
the moment map and the algebro-geometric notion of a stable vector bundle
over an algebraic curve. The results which one would expect for Kéhler man-
ifolds of higher dimension have been given by Donaldson [5], in the case of
algebraic surfaces, and Uhlenbeck and Yau [19] in general.

We discuss a similar problem related to flat principal G-bundles over
compact Riemannian manifolds, where G is a complex semisimple algebraic
group. In this situation, we call a flat bundle stable if the image of its
holonomy homomorphism is not contained in a proper parabolic subgroup of
G. The vanishing of the moment map is, roughly speaking, equivalent to the
condition that the connection should be closer in L? norm to the subspace of
connections which preserve some fixed positive definite metric than any
other connection in the same orbit with respect to the group of bundle
automorphisms.

The proof that there is a correspondence between the zeros of this moment
map and stability of connections is given in §4. The method centers on a
nonlinear heat equation, in the spirit of the work of Eells and Sampson {6]
on harmonic maps. In fact, one of the consequences of the main result is a
classification of harmonic maps from a compact Riemannian manifold M into
a negatively curved locally symmetric manifold, possibly of infinite volume.
This is given in 3.5.

The ideas of Siu [14], [15] are used in the last two sections to give some
further results in the special case of Kihler manifolds. As an example, at the
end of §5, we show that if M is a compact Kéhler manifold which has a flat
SU(n,1)-bundle which is sufficiently nontrivial topologically, then there is a
nonconstant holomorphic map from the universal cover of M into the unit
ball in C™. In the last section, we prove a conjecture of Goldman and Millson
[7] on the rigidity of actions of cocompact lattices in SU(m,1) on the unit
ball in C™. The appropriate statement for surface groups has been proven
for homomorphisms with discrete, faithful image by Toledo in [16], and for
homomorphisms with maximal characteristic number in [17]. The latter uses
the Gromov norm of the characteristic class of the bundle to establish the
result.

Acknowledgments. This paper contains a part of the material in the
author’s doctoral dissertation, written at Harvard University. It might never
have been completed without the advice and encouragement of Raoul Bott
and Cliff Taubes. They have my gratitude. I would also like to thank Robert
Zimmer for pointing out an unfortunate claim in an earlier version.
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2. Moment maps and connections

Let M be a compact connected Riemannian manifold, and 7: P — M be a
right principal Si(n, C) bundle. Suppose P has been given a Hermitian metric,
i.e. a fixed reduction of the structure group to SU(n). Consider the space &>
of smooth Si(n,C)-connections on P. €% is an affine space modelled on the
vector space &1 (M, ad(P)) of 1-forms on M with values in the adjoint bundle
associated to P. Since T*M has a Riemannian metric, and ad(P) inherits
a Hermitian metric from the reduction of the structure group, we have a
Hermitian metric on 7*M ®g ad(P) which is invariant under the group %>
of smooth automorphisms of P which preserve its metric. &!(M,ad(P))
therefore has a % *-invariant L? metric. We may therefore define the space
of “L2-connections” on P to be the completion of Z> with respect to the
distance function induced by the norm on &!(M,ad(P)), and we shall let
it be denoted by #. % is a complex Hilbert manifold, and it possesses a
Hermitian metric. This metric is of course Kahler, and the Kahler form shall
henceforth be denoted by w.

The group £* = Aut(P) of k times continuously differentiable automor-
phisms of P acts on & by conjugation if k¥ > 1. If, for example, D is a smooth
connection on P, then g acts on D by D +— go Do g™! = Dgg~!. This
extends continuously to an affine action on &, and the unitary subgroup #*
preserves the Kahler structure on %, and, a fortiori, the symplectic structure.
% contains the affine (Lagrangian) subspace % of connections preserving the
Hermitian metric, and we can split any connection D € & into components
D = Dt +0, where D" € & and # is a square-integrable 1-form with values
in the self-adjoint part of ad(P).

Proposition 2.1. % is a. Hamiltonian % *-space, with moment map
gtven by

®p(§)

—1 Ty(DT*8)€ dvol
i [ Dt pEave
_i(D*0,),

where DT* is the adjoint of DV and £ is a k times continuously differentiable
skew-adjoint section of ad(P).

Proof. Let E be the set of k times continuously differentiable skew-adjoint
sections of ad(P). We think of Z as the Lie algebra of Z*.

We need to show that & gives a Lie algebra homomorphism of E into
C>(%), where the latter is endowed with the Poisson bracket, and also that
it lifts the homomorphism of Z into the Lie algebra of vector fields on & given
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by the group action. Let f¢(A) = ®4(¢) with A€ &, € € E. Then

(dfealn = in') = —i [ T(D* g = slin’ )¢ dvol
: M
= — (DT *n — x[in’, %), &)
= —ilm(n, DT E) + (in’, (8, €])
= —ilm(n +1in', DE) = w*(DE,n +1n').
Here, * is the Hodge star associated to the Riemannian structure on M, n,7’
are one-forms with values in self-adjoint sections of ad(P), and w* is the
symplectic inner product on T*% induced by w. We have therefore shown
that @ lifts the linear map E — Ham(%) from the Lie algebra of the unitary
gauge group into Hamiltonian vector fields on the space of connections. Now
consider )
{fe, fer} = —w*(dfe, dfer) = ~w(DE, DE')
— Im(D¢, D¢')
= —Im((D*¢,[0,€]) + (6, €, DTEN)
—Im(¢&, DT*[0, €] + [0, xDT ¢'])
- Im(é.’ [D+Y*9’ §I]> = - Im(&’ [¢D7 EI])
= -Im([gl.f],¢D> = f[&,&l]. q.e,d.

If D = D* + 0, then let D = D+ — 6. We have the following alternative
method for defining ®.

Proposition 2.2.  The differential of the function ||0p||%. on the & orbit
at D is (219 p, £), where the tangent space to the orbit at D has been identified
with the space of sections of ad(P).

Proof. Let ¥(g)= |0p_pgs112. and note that

il

It

Op-pgg-1 =0p = 3Dgg™* ~ 39" Dg".

Then ]
(d¥)p(€) = (~1D¢* — 1DE,Op) + (9p, —1 D€ — L De*)
= —2Re(DT ¢t + [0p,£67],6p)
= —2Re{¢t, DT*0p) = 2i(¢T, ®p).

Here, ¢+ and £~ refer to the self-adjoint and skew-adjoint parts of £&.  q.e.d.
Thus, proving the éxistence of a connection which minimizes ||fp||z2 on a
given orbit is the analogue of the problem, considered by Kempf and Ness, of
finding a shortest vector in an orbit of a linear representation of G.
D will be called simple if there are no nonzero sections of ad(P) in its
kernel.
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Proposition 2.3. If D is stimple, there is at most one % -orbit in its
Z -orbit on which the moment map vanishes.

Proof. The function ¥ defined in 2.2 can be pulled back to ¢=, the vector
space of self-adjoint sections of ad(P), by the map exp: 1E — &, defined
pointwise by the exponential map for Si(n,C). We define ¢ = ¥ o exp. Since
¥ is % -invariant, o has a critical point if and only if ¥ does. Suppose there is
a point in 1E, corresponding to a connection D, where ¢ has a critical point.
By 2.2, ®p = 0. We will show that this critical point is unique by showing
that ¢ is strictly convex along any line emanating from D. Define

f(t) = l16(exp(t&) 122,

where 6(exp(t£)) is the one-form occurring in the decomposition of

exp(t£)(D) = D — D(exp(t£)) exp(—t)-

We have
O(exp(t€)) =0 — %(Dete)e_t6 - %etfﬁet’s
etad(§) _q e—tad() _ 1
" TZaa(e) ¢t Tzaa PC
SO
1 et ad(¢) __ 1 et ad(€) _ 1 .
t) = — 29 — D¢ — D 2a
N s —tad(e) _ etad(é _q e—tad(§) _ 1 .
@) = 2<e DE+e D¢, 20 ad(€) D¢+ ad(¢) ’
f”(t) — ”et 3d(€)D§ + e—tad(£)5§”2
— 2 {£*9€) ad(€)Dg — =>4 ad(£)De, 20
tad(€) _ ~tad(§) _ 1 .
¢ 1pet € 1 >
ad(¢€) ad(¢§)

1 ~ ~

— 5”eta.d(E)D§ + e—tad(E)D§||2 + “eta.d(E)D§ et ad(E)D€”2
+ (¢'*d0) D¢ — ¢~t2d@) D¢, D¢ — DE - 2[¢, 4))
1 ~ 1 ~

— 5Het‘a.d(&)‘Dg + e—tad(E)D€H2 + 5”et ad(E)DE _ e—tad(E)D€”2

> 0.

Thus, any critical point is unique. q.e.d.
This proposition may be interpreted as saying that there is at most one

Hermitian metric on P such that D™*§ = 0, where D™* and 6§ will depend
on the choice of metric.
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We will have cause to study a more general situation, so we will consider
G-bundles, where G is a semisimple algebraic group over R. Let K be a
maximal compact subgroup of G, and 7: P — M be a G-bundle over the
compact Riemannian manifold M. We assume that we have fixed a reduction
of the structure group of P to K. If D is a G-connection on P, then we have
a decomposition D = DT + §, where DT is a connection preserving the K-
structure and f is a one-form on M with values in the orthogonal complement
in ad(P) to ad(Px). Here, Px is the K-bundle defined by the reduction of
structure group. We define &, = D% *, where DT* is the adjoint to D%
with respect to the Killing form metric. ¢ may be interpreted as a moment
map when G is a complex Lie group. We wish to find G-connections which
are mapped by some element of Aut(P) to a connection for which @ is zero.
If one likes, this problem may be thought of as that of finding a K-structure
which, for a fixed connection D, makes ®p zero. The conditions under which
this may be done will be described in the next section, in the case of flat
connections.

3. Harmonic metrics and flat bundles

We shall focus first on the problem of giving the proper definition of stabil-
ity, and then establish the expected relationship between stable connections
and zeros of the moment map.

Gauge equivalence classes of flat bundles are determined by their holonomy,
and any homomorphism 7; M — G determines a bundle with an equivalence
class of flat connections. The space of homomorphisms of a finitely generated
group such as m; M into Si(n,C) can be given the structure of a complex
algebraic variety. Sl(n,C) acts on the variety Hom(m M, Sl(n,C)) by conju-
gation. The machinery of geometric invariant theory applies, and one finds
that the stable representations are those whose image is not contained in any
nontrivial parabolic subgroup of Sl(n,C). We take the analogous condition
for connections as our definition of stability. Suppose E is the vector bundle
associated to P by the standard representation of Si(n,C).

Definition 3.1. Let D be a flat connection on P. It vs stable if E has
no nontrivial D-invariant subbundles. It will be called reductive if any D-
invartant subbundle has a D-invariant complement.

Any reductive connection is a direct sum of stable ones. In §2, it was shown
that there is at most one %-orbit in the £-orbit of D on which the moment
map is zero, provided D is simple. The following is a nonexistence result for
zeros of the moment map. In the sequel, it will be shown that zeros do exist
in the case of a reductive connection.
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Proposition 3.2. Suppose D is not reductive. Then ® is nonzero every-
where on the $-orbit @p of D.

Proof. Since D is not reductive, there is a D-invariant subbundle E; of
E, and a corresponding D-invariant quotient E; = E/E;. E, is isomorphic
as a vector bundle to the orthogonal complement of E; in E, and we shall
henceforth identify the two. Due to the nonreductivity, we may assume that
the splitting £ = E; @ E5 is not D-invariant. Relative to this decomposition,
D takes the following form:

(5 5.)
0 D)’

where D; is the connection on F; given by p; o D, D, is the connection pso D
on Fq, p1,ps are the orthogonal projections of E on E; and E5, and 7 is a
nonzero one-form on M with values in Hom(E,, E;). Let n; be the rank of
E;, and define ¢ = nq|g, ®(—n1)|g,. Then £ is a self-adjoint section of ad(P),

and D o1 4m2)
L D(etEy—te — (P
D — D(e*%)e ( 0 D, )
Furthermore,

2
16(e (D)2 = \

01 %et(n1+n2)n
_;_et(n1+n2),,7* 0,

This function has a finite limit as t approaches —oo, and it is strictly convex,
so it has no critical points. In particular, D is not a zero of ®. The same
argument applies to any equivalent connection. q.e.d.

The following theorem will be proved in the next section.

Theorem 3.3. If D is a stable flat connection, there is a unique 7 -orbit
in Op on which ® vanishes. Equivalently, there is a unique metric on P for
which the corresponding value of ® is zero.

We shall call metrics which satisfy the condition of the theorem harmonic.
The motivation for this name may be explained as follows. Since D is flat,
the bundle of metrics on the pullback of P to the universal cover of M is
canonically equivalent to the product M x Si(n, C) /SU(n), up to the action
of elements of Sl{n,C). A metric on P is a 7y M-equivariant map H from M
to Sl(n,C)/SU(n). The condition ® = 0 is equivalent to H being harmonic
as a map of Riemannian manifolds. This may be seen by observing that the
one-form @ is identical with the differential of H and DT is the puliback of
the canonical Riemannian connection on Si(n,C)SU(n).

Everything we have done so far, and all that will be done in the following
section, remains valid if we restrict to a real semisimple Lie subgroup G of
Sl(n,C). In this paragraph and the next, the notation will be that of the

2
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end of the previous section. We shall call a flat connection D on a principal
G-bundle P stable if its holonomy at any point is not contained in a nontrivial
parabolic subgroup of G. It is reductive if the Zariski closure of its holonomy
at any point is a reductive subgroup of G. From 3.2 and the result of Birkes [2]
that a destabilizing one-parameter subgroup may be taken to be defined over
R, we get the analogue of 3.2 for flat G-bundles. We also get the analogue of
3.3 from the invariance of the argument to be given in the next section under
restriction to G. Thus, we have

Theorem 3.4. If D is a stable flat connection on the G-bundle P, there
15 a unique K-structure on P for which the corresponding value of ® s zero.

Again, we shall use the phrase ‘harmonic metric’ to describe such a K-
structure.

As a special case of 3.4, we obtain an extension of a result of Eells and
Sampson on the existence of harmonic maps. In [6], they proved that any
homotopy class of maps M — N, where N is compact and has nonpositive
sectional curvature, has a harmonic representative. We can give an extension
of this to the case where /V is a noncompact locally symmetric manifold. The
following is a corollary of 3.4.

Corollary 3.5. Suppose G is a real semisimple algebraic group, K s
a mazimal compact subgroup, and N is a Riemannian manifold (possibly of
infinite volume), which is covered by G/K. If M is a compact Riemannian
manifold and v is a homotopy class of maps from M to N, then v has a
harmonic representative if and only if the Zariski closure of vamiM in G is
reductive.

This result makes it plausible that there should be a reasonable way of
classifying harmonic maps with noncompact negatively curved targets. For
example, if N is a hyperbolic manifold, then one can express the reductivity
condition on v.7; M as a condition on the fixed point set for the action of m1 M
on the sphere at infinity associated with hyperbolic space. One has a similar
sphere at infinity associated with any negatively curved manifold, and it might
be possible, in some cases, to give a similar condition which would ensure the
existence of a harmonic map in a given homotopy class. Unfortunately, we
are unable to pursue this line of enquiry here.

4. The existence thereom

This section is devoted to the proof of 3.3. The method is in the same genre
as the arguments in [5] and [6]. We attempt to reform a given flat connection
by means of a nonlinear heat equation, which can be given in the following
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two equivalent forms:

(1) Et— = —DA¢A,
J
(2) 5 = ~%u0

Here, A is a time-dependent family of connections in the orbit of D, ¢ is a
time-dependent family of elements of &, ® 4 is D}"*0,4, and &, is ®4(p)- The
proof falls into four parts:

1. The existence of a solution to the equations above for a short period of
time;

2. existence of a solution for 0 <t < oc;

3. convergence of the solution to (1) at ¢t = co; and -

4. investigation of the dichotomy between the case where the limiting con-
nection lies in the initial orbit and that where it does not.

The first step is by now fairly standard. One need only arrange things so
that an inverse function can be applied. We refer to [10] for the details of the
argument.

Now assume we have a solution of the evolution equation defined on a
maximal time interval [0,T). The interval of definition is necessarily open on
the right end, since we could otherwise use the short time existence to extend
the solution beyond 7. We shall, for the time being, use the first version of the
evolution equation, so A will be a time-dependent connection with the original
choice of connection as its initial value. D will be the associated covariant
derivative, and D = D% 4+ § the usual decomposition. A will be the operator
d*d on functions and O% will be the operator Dt D1* + D**D*. We shall
need the usual array of Sobolev (denoted by L7) and C? spaces of section of
vector bundles. If f is some section of a vector bundle over M x [0,T), then
| f]lp will be its LP-norm on M, considered as a function of time, ||f]|px will
be its LY-norm on M, and ||f|lco its C° norm. (, ) will be the L? inner
product on M, (, ) the pointwise orthogonal inner product on M x [0,T),
and | | the pointwise norm. &?-* will be the completion of & with respect to
an LY-norm and, if pk > m = dim M, then & will be the completion of the
gauge group in the same norm. Positive constants independent of time shall
frequently enter into our calculations, and they shall be denoted by C, C’, ete.
Two occurrences of such symbols should not be expected to refer to the same
constant if they are separated by any bits of ordinary text.

Because D is flat, we have

at+1,6)=0, Dte=o0.
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Here, (1" is the curvature of D*. Now we have
d
EWH% = -2(D*9,0) = -2||| < 0,

%m? - %|D+’*0|2 = — (DT*D*® — #[[8, 3], 48], ®)

- 2(D+(I),(D) - 2|[0a (D“2
= — A|®|2 —2|D+®|? - 2|9, ®]°.

Il

Hence,
a
—|®? % <o0.
182+ Al8)” <0

In particular, the maximum principle implies that ||®||co is bounded uni-
formly on [0,T). Also, from the first calculation, ||f}jz is bounded uniformly
for all time.

Next, we need a Weitzenbdck formula for 001 on one-forms with values in
the self-adjoint part of ad(P). Let V be the connection on T*M ® ad(P) con-
structed from D% and the canonical Riemannian connection on T* M. Choose
a normal coordinate system at p € M and let e; be an orthonormal frame in
TpM, extended to vector fields in a neighborhood of p by parallel transport
along geodesics. Let ¢ be a one-form with values in ¢=5(P). Calculating at p,
we find

O*g(e;) = Vi(DH*9) ZV(D )(esye:)

VS V0 ) - 3 V(Y — Vi)

Jj=1 Jj=1
= V*Vole:) — Y QT dle;)
Jj=1
= V*Vo(e:) — > 605 Me;) + > [0, 6]
= ot

1 n
= V*V(e;) + ¢ o Riccin (e;) — -2-;[[9],0,] , &5

= V*V(e;) + (¢ o Riceinr)(e;) + Z * [, [0, 0])(e;).
Riccips is the Ricci curvature of M, and it will be denoted by Ric from now
on. Just now, we want the following special case of this formula:
({O0%9,6) = (V*V4,0) + (0 o Ric, 8) + 1|{6, 6]
= $A0)® +|V6|? + (8 o Ric, 0) + ][0, 6]|°.
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Thus,
@113 = (O%6,0) = [[V8]3 + (6 o Ric, 8) + 41|16, 613,
which implies
IVolI3 + 116, 61112 < C(l1@lI3 + 16113) < ¢’
for all t € [0,T).

The following is an application of the Sobolev inequalities. For p > 1,

”‘9“2mp/(m—2) < O/M Id(l + |0|I2)p/2|2 dvol
3) —cC / 1p(V9,0)(1 + 0]2)7/212 d vol
M
<C / |V6)2(1 + |6]*)P~* dvol.
M

We calculate as follows:

0
—(1 2yp
S (1+160%)

(4) = —2p(1 + [0]>)*~1{O*4,0)
= —2p(1 4 |9|?)P~1 EAW + V0|2 + {# o Ric, ) + iuo,on? ,

AL+ [61%)F = d*[p(1 + (617~ d|8f?]
(5) = —plp = 1)(1+181*)P~2|dl6f*|?
+Ap(1+ 6%~ Alg)*.

Adding (4) and (5) gives

(% + A) (L+161%)7 = —p(p — 1)(1 +16/%)P~2|dl6)*|?

= 2p(L+ 0] [|VOI? + (0 o Ric, 0) + 116, 6]17]
< = 2p(1+ 1017771 VOP + O (1 + 10]%)P |6,

Integrating over M and rearranging the terms give

(6) /(1+|«9|2)”‘1]V0|2dv01SO\%”L}-WI?H; + O+ ORI,
M
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The first term on the right can be estimated as follows:

d
—1I1 g12||p
~ 1+ 1021

P /M(D+<1>, (L + 161%)7~18) d vol

p /M(<I>,D"”*[(1 + 1612)P=16]) dvol

) =2 /M«sb, (1+]6]2)P~1®)

—x(2p—2)[(1+ [6*)P~2(V8,8) A %8]| dvol

50/ (1+|0|2)”_1|V0|dvol+0/ 1+ 181%)P"1dvol.
M M

The fact that ||®||co is uniformly bounded has been used to get the last line.
(6) and (7) imply

(8) /M(1+}02)"_1]V0|2dv01 <C [/Mu +16)%)P=| V8| dvol +]]1 + |9|2ng] )

Let k& > 2 be an integer. From (3), (8) and Hélder’s inequality, we get
9 16ll2me/ (m—2) < CIL+ 1613551161~ V01 |2 + 61155)-

(3) and (9) may be used as moves in an iterative process which eventually
gives a bound on ||8||, for any value of ¢. The process begins by taking (9)
with k = 2:

18l2mp/(m—2) < C[1+ (1612521 V6ll2 + 161|551
In case p=1,
10ll2m/(m—2) < C[L+ (V]2 +[|6]3] < C".

Next take p = min(2, 2m/(m — 2)). Then (9) again gives a bound on [|f]| 25 .
This may be repeated until p = 2, which gives

161].4m/(m—~2) < C[1+ IBIIZIVON2 + 110]1Z] < C".
From (8), we have also gained the following bound:

/ (14 16?)|V8|2dvol < C.
M

Now (9) becomes useful for £ = 3 and 2 < p < 3. We may use it repeatedly
until we have obtained uniform bounds on

[CIT—— /M(l + 1612)2(V6]2 dvol,
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just as above. Now the version of (9) with £ = 4 and 3 < p < 4 becomes
relevant, and the process continues as long as necessary to obtain a bound on
10]|2p for some p > m.

First, we use this to show that the solution to the heat equation extends
till the end of time. As ¢ approaches T, observe that |7, = 1|/[0,0]||, is
uniformly bounded. We now quote a theorem of Uhlenbeck, given in [18].

Theorem 4.1. Let D; be a sequence of unitary connections on a bundle
over a compact Riemannian manifold M such that |4, < B, 1 <1 < oo,
2p > dim M. Then there exists a sequence u; of LY unitary automorphisms
of the bundle such that the sequence D; — Diuiui"l lies in a bounded subset of
&rl

In particular, there is some family u; such that Dt = Dt — Dtuy™!
remains in a bounded subet of 71, Define n; = D', and 0} = ufu~'. We
know that

D¢, = DF'6, + [, 0, = 0.

Furthermore, 7 is uniformly bounded in L¥-norm, so the Sobolev embedding
theorem assures us of a uniform bound on the L*-norm of .. Since ||0;]|, is
uniformly bounded, we get a bound on the LP-norm of [n;, 8], so || Dy’ Ol is
uniformly bounded. Similarly, the fact that

@, = D0, = D0, — <l #05),

and ||®’||, is uniformly bounded implies that || DF*"*§’|, is uniformly bounded.
Hence, ¢’ is uniformly bounded in the LY-norm. This implies that D’'g’¢g">~!
is bounded in the L¥-norm, where D' = Dt/ + ¢’ and ¢’ = ug.

Observe that v

2( 2=-2(0 < Clg|?

3119/ (®g9.9) < Clgl*
s0 |g|? < Ae®?, and ||g||co is uniformly bounded on any finite time interval.
The same holds true for ||¢||co, since |¢'| = lg|. |[D'¢’¢" |, < C implies
I1D'¢'ll, < C', so ||g'|lpa < C". Similarly, ||[D'g’g" " ||p,; < C" implies
llgllp,2 < C"” on [0,T). Thus, the solution of (2) extends to [0,T], and, by
the short time existence, to some [0,T + ¢). Since T was assumed maximal,
the solution exists for all time.

Now consider the family of connections D; as ¢t approaches co. We know
that they lie in a weakly compact subset of ZP'!, so some subsequence con-
verges weakly to a connection D.,. We claim that if Dy was stable, then
Dy, must lie in the same 7 orbit. To show this, we borrow an argument
from Donaldson [4]. Note first that, by standard arguments, the LP-norm
of the curvature is a weakly lower semicontinuous function on %?'1. Hence,
D, is flat. We argue that Hom(Dq, D) is nonzero, i.e. there is a nontrivial
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section o of Hom(FE, E) for which Dg o0 = 0, where Dy o, is the connection
on Hom(E, E) induced by Dg on the first factor and Dy, on the second. If
Hom(Dg, Do) = 0, then

“DO,ooU“m 2 CH‘7“2m> o € Hom(E, E).
By the embedding theorem for Sobolev spaces, we have
1 Do,000lm > C’l|o|2m-

Furthermore, the embedding LT* — L™ is compact, so D} converges to D
in the L?™-norm. Let ¢, = Do, — D;. Then

”-DO,ooo'”m - “-Do,to'”m < ”DO,ooo' - DO,t0||m
< O"l¢eolim < C”[[¢tll2mlioll2m.

For each t and o, one has
Do t0llm 2 | Do,co0llm = C”||d¢ll2mlloll2m
> (C" = C"Igtll2m)liofl2m.

We may make ||@¢||2m as small as we like by choosing ¢ close enough to oo, so
C' = C"||¢¢||2m is eventually positive. But this implies that Hom(Dg, D}) =0
for some t, contradicting the fact that the D’ all lie in the same orbit for
t € [0,00). Thus, there must be a nontrivial element ¢ of Hom(Dy, Da).
Since Do and D, are both flat and ¢ is a covariant constant, its rank must
be constant on M. Of necessity, the kernel and cokernel of o must be Dy and
D, invariant, respectively. However, Dy preserves no nontrivial subbundles,
8o ¢ has zero as its kernel, and is therefore an isomorphism of Dy and De.
Thus, Do lies in the same orbit as Dy. The corresponding value of ® is zero.
Smoothness of harmonic metrics associated with smooth connections follows
by standard regularity arguments. The proof of 3.3 is complete.

5. Holomorphic metrics and Siu’s argument

In {14] and [15], Siu gave criteria for harmonic maps between Kihler man-
ifolds to be holomorphic. Results of this sort are of interest in the context of
flat G-bundles over Kéhler manifolds when G/K is a Hermitian symmetric
space. It makes sense in the situation to speak of holomorphic metrics, and
these will be special cases of harmonic metrics. We shall exploit Siu’s methods
to give criteria for flat SU(n, 1)-bundles over compact K&hler manifolds to ad-
mit holomorphic metrics. All the essential moves in the argument are found in
[14] and [15], although a few minor modifications have been found necessary
in order to apply them in the current situation. The principal innovation is
in the applications, which exploit 3.4.
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Suppose that M is Kéhler with Kéhler form w, and P is a principal G-
bundle over M with flat connection D. We assume that G/K is a Hermitian
symmetric space. We preserve the notation of the previous sections. The
usual decomposition of T*M ® C into (1,0) and (0,1) components is available.
Assume that P has a harmonic metric, with D = DT + § the correspond-
ing decomposition. Let Dt = 91 + 3%, with 8+ the composition of DT
with projection onto (1,0)-forms and 37" the composition of DT with pro-
jection onto (0,1)-forms. We also have ad(P) = V @& W, corresponding to
the decomposition g = k @& p of the Lie algebra of G. Since G/K is Hermi-
tian symmetric, there is the further decomposition p ® C = p* @ p~ into
the eigenspaces corresponding to ¢ and —: of the complex structure J. The
corresponding decomposition of W is WT and W~. We have the following
fourfold decomposition:

0=06,°+0610 + 63" 402

Note that 6> is the complex conjugate of Oi’o, and 6’3;1 that of 61°. Observe
further that the metric is holomorphic if and only if 6’0+’1 is zero, and it is
antiholomorphic if %! is zero. From the condition D18 = 0, we get

a+ei0 =0, 6% =0, 9+e°=0, F 6> =0,
37010 +ate% =0, 3 M0 +0ate%! =0

From the fact that the curvature of D" is —1[8,6], and p* and p~ are abelian
Lie algebras, we get

otoot =—[p0,019), 3t odt = —[601,0%).

To formulate the condition that the metric is harmonic in a convenient form,
we shall need to calculate in a simply connected neighborhood U of p € M.
We have the Kihler identities for 97 and 3

ot*=—i[[*3'), J

" =4[, 07].
Note that, in a neighborhood such as we have chosen, we can think of the
harmonic metric as a map f: U — G/K, and 8 = —%dff‘l, where we
have identified G/K with self-adjoint elements of G for some embedding in
Sli(n,C), and we use a metric which is parallel for d as the background metric.
Then

at*e10 = L5 [ar Y

= LiL*@aff Y+ L@t 0f 7).
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Similarly,
2Dt =L (0t —Off +3ffY)
=iL*(0*@ff) -3 [(0f17")
=LY (0[0ff1 - 0[0f f~ |+ 2[0f 71,05 f 7Y
AN
iL*@ffrofft+00ff 7t —dlof 7))
=iL*@ffrofft - 00ff~ —-dlaf )
L (Offroff o fof Tt - 20[0f f7Y)
=iL*(=20[0ff~Y + [Off L, 0ff71)) = 40100,

P
5]

I
-

Thus, f is a harmonic metric if and only if 87*61° = 0, i.e., if and only if
31610 is a primitive (1,1)-form.

Let {, )w be the complexification of the pointwise K-invariant orthogonal
inner product on W. Let ( , ) be the pointwise metric on W ® C defined by
(w,w') = {(w,@'}w, or on any bundle of the form AP T*M @ W ® C. The
next result is our version of Siu’s Bochner type formula for harmonic maps.

Theorem 5.1. If D = D% + 8 is the decomposition associated with a
harmonic metric on P, then [01’0,01_’0] =0.

Proof. First we calculate

—(0+0%",97 020w + (65,670 01%)w

= — (0463107 010w — (631,01 016" )w

= - <a+03—’1,5+01—!05 >W + <03-’17 [[0}4:0701—70]’0?:1]>W
=

005,301 w — (63,0211, [61°, 02w

89(0%1, 01w =

.=t e
Since 8 610 is primitive, we have

*(—71712-)—!<a+99;1,5+91’0>w Aw™™2 = (3%6%1, 0105w,
as a consequence of Theorem 2 on p. 23 of [20]. Thus, the left side is a
nonnegative 2n-form. Wedging the result of the initial calculation with w™ =2
gives an exact form as a sum of two nonnegative 2n-forms. Hence, each of the
three must be zero. In particular, this implies [01’0., 01’0] =0. g.ed.

From this point on, we will specialize to the case G = SU(n,1). For future
reference, the reader should keep in mind that, with minor modifications, the
following arguments apply to PSU(n, 1), which may be realized as a linear
group by means of the adjoint representation.
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Proposition 5.2. Suppose P is a flat SU(n,1)-bundle with harmonic
metric. If 0 has real rank at least four as a map 0: T,M — W, ai some
pE M, then 91’0 or 821 vanishes at .

Proof. Let V = T,M ® C and identify W, ® C with pc = p® C.
91:9: V — pc has complex rank at least two, so there exist two dimensional
subspaces of V on which the restriction of 419 is injective. Suppose that v,
and vy are a basis for one such subspace. Let vj and v; be the dual basis.
Then the restriction of 80 to this subspace takes the form

610 = v} ® p1 + v} @ pa,

with p; and ps linearly independent in pg. Let p; = pj’ +p; and ps = pg' +pg
be the decompositions according to the direct sum pc = pT @ p~. On the
subspace in question, we have

(619,01 = v} A v} ® [p1,p2] = v} Avs @ ([p7,p7 ] + o7 . P ))-

One has a natural isomorphism of p* with the matrices in si{(n+ 1, C) whose
entries are zero unless they are simultaneously in the last column and first
n rows. Similarly, p~ can be identified with the Lie algebra of transposes of
such matrices. Assume Oi’o # 0. We may choose coordinates in p* so that

0 1
pf = 00 pr=10 0 0
a1 an O
0 b
Py = |, m=1|o 0 0
0 b, 0
0 0 C1 Cn
Then
c1 *° Cn 0
[pf,p3] = 9 9 0 ],
: e
0
- —ba; :
[pT.p3] = % o
0 - 0 p_ akbk

Suppose some ¢; # 0. Then ¢; = bia; #0,s0 a; #0. If a; # 0, then b; =0
for 2 < i < m, s0 pg = bypT.

[py .07 ]+ IpT.P5] = [pT,p7 — bap] = 0.
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This implies p; — byp] = 0, so p2 = bip; and 09 is not injective on the
subspace generated by v; and vy. Since we obtain this contradiction if any of
a1, ,Qp,C1," - ,Cp I8 NONZErO, it must be that 69 is zero on the subspace
generated by v; and vs.

The set of two dimensional subspaces of ¥V on which 810 is injective is an
open dense subset of the Grassmannian of 2-planes in V. The set of 2-planes
for which the restriction of 01_’0 vanishes is a component of this subset, and
similarly for those on which §1° vanishes. Thus, the restriction of one of the
two to 2-planes in V vanishes on a nonempty open subset of the Grassmannian,
so one of them must be identically zero on V. q.e.d.

The main result follows from Aronszajn’s unique continuation theorem for
elliptic systems, exactly as in Proposition 4 of [14].

Theorem 5.3. If P is a flat SU(n,1)-bundle over M with harmonic
metric and 0 has real rank four at some p € M, then the metric is either
holomorphic or antiholomorphic.

A maximal compact subgroup of SU(n, 1) is isomorphic to U(n), so we may
associate Chern classes ¢;(P) with any SU(n,1)-bundle P. The Chern forms
constructed from the curvature of DT are locally pullbacks of the canonical
Chern forms on complex hyperbolic space, and the semisimplification of a flat
bundle is topologically equivalent to it, so we have the following corollary of
the theorem.

Corollary 5.4. If P is a flat SU(n,1)-bundle over M with ¢;(P) topo-
logically nonzero for some i > 2, then there is a nonconstant holomorphic map
from the universal cover of M to complex hyperbolic space.

We also mention the following result, which follows immediately from 3.2
and the fact that compositions of holomorphic maps are holomorphic.

Theorem 5.5. If f: M — N is a holomorphic map and P s a flat G-
bundle over N with holomorphic metric, then f*P is a reductive bundle over
M with holomorphic metric.

This has interesting points of contact with the theory of variations of Hodge
structure. In particular, the theorems of Deligne [3] and Griffiths [8] on the
complete reducibility of the action of the fundamental group of the base of
a variation of Hodge structure on the fiber follow from 5.5 in the case where
the base is compact. This follows immediately if the Hodge structures in
question are classified by a Hermitian symmetric space. For general Hodge
structures, it follows by observing that the composition of a holomorphic
map into the classifying space composed with the canonical projection onto a
symmetric space is always harmonic. It should be mentioned that M. Nori,
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in unpublished work, has given a proof of Deligne’s theorem in full generality
from this perspective.

6. Rigidity of flat bundles over complex hyperbolic manifolds

The purpose of this section is to extract another consequence of 3.4 and
5.3. We shall be dealing with manifolds whose universal cover is the unit ball
in C™, and we shall refer to them as complex hyperbolic manifolds. The main
objective will be to prove a rigidity theorem for actions of lattices in SU(m, 1)
on the unit ball B™ in an n-dimensional complex vector space.

Questions of this sort have already received a fair amount of attention.
Most notably, there is the Mostow-Prasad strong rigidity theorem for finite
volume complex hyperbolic manifolds. More recently, Goldman and Millson
[7] discussed deformations of a cocompact lattice I in SU(m, 1) as a subgroup
of SU(n,1), n > m. T was regarded as a subgroup of SU(n,1) by means of
the canonical inclusion of SU(m, 1) in SU(n,1). They showed that the action
by isometries of I' on B™ was locally rigid.

Goldman and Millson formulated the following problem. Let w be the
invariant Kéhler form (with the proper normalization) on the complex n-ball.
By the van Est theorem, it defines an element in the continuous Eilenberg-
Mac Lane cohomology group H2(PSU(n,1),R). Let

w™ € H*™(PSU(n,1),R)

be the mth exterior power. If p: ' — PSU(n,1) is a homomorphism, we
obtain a class p*w™ € H?™(I',R). Suppose T' is a cocompact, torsion free
discrete subgroup of PSU(m, 1). Then one can choose a fundamental class [I']
in Hyp(T',R). Define the homological volume vol(p) of p to be the absolute
value of p*w™ /m! evaluated on [I']. Goldman and Millson asked whether the
following result was true.

Theorem 6.1. Suppose M is a compact complex hyperbolic manifold of
complez dimension at least two, with fundmental group I'. If p is a homomor-
phism of T into SU(n, 1) with vol(p) = vol(M), then there is a totally geodesic
holomorphic embedding of B™ in B™ which is equivariant with respect to p.

Proof. Let f: M — ¥ be a smooth section of the flat bundle with fiber
B”™ determined by p. Assume first the flat PSU(n,1)-bundle on M deter-
mined by p is reductive. Then by 3.4, we may assume that f is a harmonic
section. Since vol{p) is nonzero, f must have real rank 2m at some point as
a map from the universal cover of M to B™. By 5.3, f is either holomor-
phic or antiholomorphic. By choosing the invariant complex structure on B™
appropriately, we may arrange that it is holomorphic.
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By Corollary 4.2 on p. 42 of Kobayashi [12], f is distance nonincreasing
with respect to the metrics; we are using on M and B™. We therefore have,
in the obvious sense, that f*wpr < wpr. On the other hand, the equality of
volumes implies that the cohomology classes defined by wj; and f*wp. agree
up to sign. Since f is holomorphic, they are both positive, and

/wTJ:/ [fwBn.
M M

Given the inequality above, the two forms must be equal, so f is actually an
isometric immersion. Now recall the following consequence of the Weitzenbock
formula of §4 (and the accompanying notation):

Alf)? = 2(V*V0 8) ~ 2|V

~2ZD+0(CZ +Z<Ze(9 : >
+Z<Z ]z,e]e>—2[v012

7j=1

~2Z (lesy e e5)), +2Z (18:, 651, 85), 85) — 2| V8|2

%7

Since the metric f is an isometric immersion and e;, - - - , e2,, are an orthonor-
mal basis at each point, the #; must all be of unit length and mutually or-
thogonal. Let wi,--- ,wsx be a basis for the space of columns of & complex
numbers, regarded as a real vector space. Let w] be the conjugate transpose

of w;. Then define
6' __ 0 Wy
T \wr 0 )

The &; are a basis of p C su(k,1). A simple calculation shows

e e 0 |wj|*wi — (wi, wy)w;

1616080 = (s 0 |
Thus, if the w; were mutually perpendicular and of unit norm, we have
[éja [§za é]” =&, 1#£7.

Since this is the case with the e; and §;, we have

O(lej,eilse5) =05, 1 #4,  [6:,85],0;] =65, i#7.
Furthermore, since 6 is an isometric injection at each point, |8|2 is constant.
Therefore, [V8]2 = 0, so f is totally geodesic.

Now we need to justify our assumption that the flat PSU(n,1)-bundle on
M is reductive. If it is not, then the image of T in SU(n, 1) leaves invariant
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a nontrivial subspace V of the standard representation in C?*1. Let VL C
C™*1 be the annihilator of V relative to the invariant Hermitian form. V+
is an invariant subspace. If the restriction of the invariant Hermitian form
to V is nondegenerate, then ¥+ is an invariant complement. Since p is not
reductive, there must be an invariant subspace such that the restriction of
the Hermitian form is degenerate. Let V/ = V NV+. Every element of V'
is in the null cone of C™*!. If v,w € V' are linearly independent, then some
linear combination is not contained in the null cone. Thus, V'’ is of dimension
one, and it is invariant, since it is the intersection of invariant subspaces.
Hence, m1 M lands in a parabolic subgroup of PSU(n, 1) whose inverse image
in SU(n,1) leaves invariant a complex line in the null cone of C"*1. We may
think of the Lie algebra of SU(n,1) as the set of matrices

ia w b
—w* S—ila+e)/(n—-1) v ,
b v* ic

where a,c € R, b € C, v,w € C"', and S € su(n — 1). The Lie algebra
of the subgroup which leaves the line generated by (1,0,--- ,0,1) invariant is
given by the set of matrices

io w B—ilyv+a)
n= —w* S+ (2ivy/(n—1))Id w* ,
B+i(v+a) w —1(2v+ )

where S € su(n — 1), w € C" !, and «, 8,7 € R. The corresponding group
is the semidirect product of a nilpotent group and a group of automorphisms
of that group. The latter is a product of a compact group and a group of
dilatations isomorphic to the multiplicative group in C. The associated graded
flat vector bundle has holonomy contained in this group of automorphisms, so -
its Chern classes vanish. On the other hand, as mentioned in the last section,
the Chern classes of this bundle are the same as those of the original one, so
we reach a contradiction, unless the original bundle was reductive. q.e.d.

The theorem implies that the subspace of Hom(m M, PSU{n,1)) consist-
ing of representations with maximal volume is isomorphic to the space of
homomorphisms of 71 M into U(n — m)/pp—m, where pi,_,, is the group of
(n — m)th roots of unity, since the latter is isomorphic to the centralizer of
PSU(m,1) in PSU(n,1). This has been proven by Goldman and Millson for
the component containing the standard representation.
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